Course Title: Machine Learning
Part A: Course Overview
Course Title: Machine Learning
Credit Points: 12.00
Terms
Course Code |
Campus |
Career |
School |
Learning Mode |
Teaching Period(s) |
MATH2319 |
City Campus |
Postgraduate |
171H School of Science |
Face-to-Face |
Sem 1 2017, Sem 1 2018, Sem 1 2019, Sem 1 2020, Sem 1 2021, Sem 1 2023 |
MATH2446 |
RMIT University Vietnam |
Postgraduate |
171H School of Science |
Face-to-Face |
Viet1 2023 |
Course Coordinator: Dr. Devindri Perera
Course Coordinator Phone: +61 3 9925 0396
Course Coordinator Email: devindri.perera@rmit.edu.au
Course Coordinator Availability: By appointment and email
Pre-requisite Courses and Assumed Knowledge and Capabilities
MATH1324 - Introduction to Statistics or Equivalent
MATH2267 - Essential Mathematics for Analytics or Equivalent
Course Description
This course will cover the following topics:
- Data preparation for machine learning
- Information-based learning
- Similarity-based learning
- Probability-based learning
- Feature selection and feature ranking
- Model evaluation
- Clustering
- Case studies
The course will be delivered using the Python programming language and the Scikit-Learn machine learning module in a Jupyter Notebook environment.
Objectives/Learning Outcomes/Capability Development
This course contributes to the following Program Learning Outcomes for MC004 Master of Statistics and Operations Research and MC242 Master of Analytics:
Personal and professional awareness
- the ability to reflect on experience and improve your own future practice
- the ability to apply the principles of lifelong learning to any new challenge.
Knowledge and technical competence
- an understanding of appropriate and relevant, fundamental and applied mathematical and statistical knowledge, methodologies and modern computational tools.
Problem-solving
- the ability to bring together and flexibly apply knowledge to characterise, analyse and solve a wide range of problems an understanding of the balance between the complexity / accuracy of the mathematical / statistical models used and the timeliness of the delivery of the solution.
Teamwork and project management
- the ability to constructively engage with other team members and resolve conflict.
Communication
- the ability to effectively communicate both technical and non-technical material in a range of forms (written, electronic, graphic, oral) and to tailor the style and means of communication to different audiences. Of particular interest is the ability to explain technical material, without unnecessary jargon, to lay persons such as the general public or line managers.
Information literacy
- the ability to locate and use data and information and evaluate its quality with respect to its authority and relevance.
On completion of this course, you will be able to:
- Understand the fundamental concepts of machine learning, the underlying assumptions, and its limitations.
- Develop a thorough understanding of popular machine learning algorithms.
- Perform efficient implementation of these techniques on real data using the relevant software packages.
- Assess and compare performance of different methods for a given machine learning problem.
Overview of Learning Activities
The course will be delivered through a combination of lectorials and practice sessions. The course will be fully supported by the Canvas learning management system.
Overview of Learning Resources
A list of prescribed/ recommended textbooks for this course will be provided on Canvas. All course materials will be posted on Canvas.
The software packages can be accessed from the school computer labs, as well as through the RMIT MyDesktop system anywhere anytime.
Library Subject Guide for Mathematics & Statistics http://rmit.libguides.com/mathstats
Overview of Assessment
This course has no hurdle requirements.
Assessment Tasks
Task 1: Course Project
Weighting (40%)
This assessment supports CLOs 1, 2, 3, & 4
Task 2: Bi-Weekly Quizzes
Weighting (40%)
This assessment supports CLOs 1, 2, 3, & 4
Task 3: Online Final Test
Weighting (20%)
This assessment supports CLOs 1, 2, & 4