Course Title: Apply mathematical techniques to scientific contexts
Part B: Course Detail
Teaching Period: Term2 2015
Course Code: MATH7064
Course Title: Apply mathematical techniques to scientific contexts
School: 155T Vocational Health and Sciences
Campus: City Campus
Program: C4327  Certificate IV in Tertiary Preparation
Course Contact: Nancy Varughese
Course Contact Phone: +61 3 9925 4713
Course Contact Email: nancy.varughese@rmit.edu.au
Name and Contact Details of All Other Relevant Staff
Clea Price
51.04.19
clea.price@rmit.edu.au
Nominal Hours: 70
Regardless of the mode of delivery, represent a guide to the relative teaching time and student effort required to successfully achieve a particular competency/module. This may include not only scheduled classes or workplace visits but also the amount of effort required to undertake, evaluate and complete all assessment requirements, including any nonclassroom activities.
Prerequisites and Corequisites
None
Course Description
The purpose of this unit is to provide learners with knowledge and skills related to basic statistics, functions and their graphs, circular functions, exponents and logarithms.
National Codes, Titles, Elements and Performance Criteria
National Element Code & Title: 
VU20934 Apply mathematical techniques to scientific contexts 
Element: 
1 Use unit circle definitions of trigonometric quantities, graphs of the three basic trigonometric functions and radian measure to solve mathematics problems 
Performance Criteria: 
· 1.1: sinx, cosx and tanx are defined in terms of the unit circle and symmetry properties are used to convert the function of a negative angle or an angle greater than 90 degrees to the function of an acute angle. · 1.2: Angles are converted between degrees and radian measure. · 1.3: The value of the three basic trigonometric ratios of any angle given in degrees or radians is determined. · 1.4: The graphs of y=sinx, y=cosx and y=tanx, where x is measured in degrees or radians are sketched. · 1.5: The graphs of y=asinbx and y=acosbx, giving amplitude and wavelength are sketched. · 1.6: Problems involving simple applications of circular functions are solved. 
Element: 
2 Use simple algebraic functions and their graphs to solve mathematics problems 
Performance Criteria: 
· 2.1: Simple problems involving direct and inverse proportion are solved. · 2.2: Given a graph, its general shape, rates of change, intercepts and asymptotes are described and its domain and range are given using set notation. · 2.3: The graph of a quadratic function is sketched. · 2.4: Given its graph, the set of coordinates which make up the relation or its equation determine whether a relation is a function. · 2.5: Quadratic equations are solved both algebraically and graphically. · 2.6: Equations are determined from graphs with known quadratic rules. · 2.7: Simultaneous equations are solved algebraically and graphically. 
Element: 
3 Determine nonlinear laws by transforming them into a linear form 
Performance Criteria: 
· 3.1: A set of nonlinear data is transformed to a linear form and the line of best fit is drawn. · 3.2: The corresponding nonlinear formula is determined. 
Element: 
4 Solve problems involving exponential and logarithmic functions 
Performance Criteria: 
· 4.1: Exponential expressions are simplified using the laws of indices. · 4.2: Exponential equations are solved without using logarithms. · 4.3: Expressions are converted between exponential and logarithmic forms. · 4.4: Logarithms are evaluated. · 4.5: Applied problems are solved using logarithms and simple exponential equations. · 4.6: Graphs of exponential functions are drawn. 
Element: 
5 Collect and process numerical data to illustrate its statistical properties 
Performance Criteria: 
· 5.1: Statistical data is presented using tables and graphs. · 5.2: Using frequency distribution curves, determine numbers and/or percentage values which have a particular characteristic. · 5.3: Using cumulative frequency curves, determine percentiles for data. · 5.4: Measures of central tendency are determined for a given set of data giving limitation of their use in isolation. · 5.5: Determine measures of spread giving limitation of their use in isolation. · 5.6: Properties of statistical data are determined. 
Learning Outcomes
By the end of this course, students will be able to:
 Understand technical mathematical terminology.
 Apply mathematical logic to a scientific context.
 Use a scientific calculator for complex calculations.
Details of Learning Activities
 discussions about the theory of mathematical concepts and their real world applications.
 exercises to consolidate knowledge
Teaching Schedule
Week Starting 
Unit 
Topic Assessments 

1 6th July 
1: Algebra 
Monday: Orientation (no class) Thursday: 1.1: Linear Equations 

2 13th July 
Monday: 1.2: Quadratic Equations Thursday: 1.3: Simultaneous Quadratic and Linear Equations 


3 20th July 
Monday: 1.4: Cubic Equations Thursday: 2.1: Function and Set Notation  
2: Functions  
4 27th July 
Monday: 2.2: Linear Functions Thursday: 2.3: Quadratic Functions 


5 3rd August 
Monday: 2.4: Cubic Functions Thursday: 2.5: Linearizing Functions 


6 10th August 
Assignment One

Monday: Assignment One – Algebra and Functions (20%) Due 17th August Thursday: 3.1: Index Laws 

3: Indices and Logarithms  
7 17th August 
Monday: 3.2: Solving Indicial Equations Thursday: 3.3: The Relationship between Indices and Logarithms 


8 24th August 
Monday: 3.4: Exponential Graphs Thursday: 3.5: Applications of Exponentials and Logarithms 


Mid Semester Break 


9 7th September 
4: Statistics 
Monday: 4.1: Classification and Organisation of Data Thursday: Quiz One – Indices and Logarithms (15%) 

10 14th September 
Monday: 4.2: Representing Data Thursday: 4.3: Measures of Central Tendency – Ungrouped Data 


11 21st September 
Monday: 4.4: Measures of Central Tendency – Grouped Data Thursday: 4.5: Measures of Dispersion 


12 28th September 
Monday: Assignment Two – Statistics (20%) Due 5th October Thursday: 5.1: Radians and the Unit Circle  
5: Circular Functions  
13 5th October 
Monday & Thursday: 5.2: Unit Circle, Symmetry, Exact Values and Identities 


14 12th October 
Monday: 5.3: Circular Functions Thursday: 5.3: Circular Functions, 5.4: Applications of Circular Functions 


15 19th October 
Monday: Quiz Two – Circular Functions (15%) Thursday: Exam Revision  
Exam Revision  
16 26th October 
Monday & Thursday: Exam Revision 


17 2nd November 
Monday: Public Holiday – No Class Thursday: Final Exam (30%)  
EXAM 

Learning Resources
Prescribed Texts
References
Other Resources
A scientific calculator is recommended for this course.
Overview of Assessment
Assessments for this course may include the following:
assignments, quizzes and written exams
Assessment Tasks
· Assignment 1 – Algebra and Functions (20%)
· Quiz 1 – Indices and Logarithms (15%)
· Assignment 2 – Statistics (20%)
· Quiz 2 – Circular Functions (15%)
· Final Exam – Algebra, Functions, Indices and Logarithms, Statistics and Circular Functions (30%)
Assessment Matrix
Other Information
· This course is graded in accordance with competencybased assessment, but also utilises graded assessment:
o CHD: Competent with High Distinction (80100%)
o CDI: Competent with Distinction (7079%)
o CC: Competent with Credit (6069%)
o CAG: Competency Achieved – Graded (5059%)
o NYC: Not Yet Competent (049%)
o DNS: Did Not Submit for Assessment
· Late work that is submitted without an application for an extension will not be corrected.
· APPLICATION FOR EXTENSION OF TIME FOR SUBMISSION FOR ASSESSABLE WORK:
o A student may apply for an extension of up to 7 days from the original due date.
o They must lodge the application form (available online http://www1.rmit.edu.au/students/assessment/extension) at least 24 hours before the due date.
o The application is lodged with the School Admin Office on Level 6, Bdg 51, or emailed to the Coordinator (nancy.varughese@rmit.edu.au).
o Students requiring extensions longer than 7 days must apply for Special Consideration (see the “Help Me” link in blackboard, via myRMIT studies or http://www1.rmit.edu.au/students/specialconsideration).
§ For missed assessments such as exams – you (& your doctor if you are sick) must fill out a special consideration form.
§ This form must be lodged online with supporting evidence (eg. Medical certificate), prior to, or within, 48 hours of the scheduled time of examination.
§ If you miss an assessment task due to unavoidable circumstances, you need to follow the procedures of special consideration and apply within the allowed time frame.
Course Overview: Access Course Overview