Course Title: Undertake computations in an electrotechnology environment
Part B: Course Detail
Teaching Period: Term2 2011
Course Code: EEET6783C
Course Title: Undertake computations in an electrotechnology environment
School: 130T Vocational Engineering
Campus: City Campus
Program: C6085 - Advanced Diploma of Electrical - Technology
Course Contact: Dr Elmas Aliu
Course Contact Phone: +61 3 9925 4360
Course Contact Email: elmas.aliu@rmit.edu.au
Name and Contact Details of All Other Relevant Staff
Nominal Hours: 120
Regardless of the mode of delivery, represent a guide to the relative teaching time and student effort required to successfully achieve a particular competency/module. This may include not only scheduled classes or workplace visits but also the amount of effort required to undertake, evaluate and complete all assessment requirements, including any non-classroom activities.
Pre-requisites and Co-requisites
Nil
Course Description
This unit covers computational and mathematical procedures
to solve problems or to enhance given data. It encompasses
working safely, applying knowledge of undertaking
computations in electrotechnology environment.
National Codes, Titles, Elements and Performance Criteria
National Element Code & Title: |
UEENEEE050B Undertake computations in an electrotechnology environment |
Element: |
• Prepare to undertake computations. |
Performance Criteria: |
1.1 Computational activities are planned and prepared |
Learning Outcomes
N/A
Details of Learning Activities
Students will participate face to face in
• Classroom tutorial activities to consolidate the core essential mathematical and statistical data concepts for engineering study, which may include algebraic manipulations and functions, indices and logarithms trigonometric functions, exponential and logarithmic functions, differential and integral calculus, statistics and probability.
• Work simulation activities focus in technical leadership activities, which include: team building, identify team member’s work task, clear and concise dissemination of ideas and information, planning and organising activities to meet requested standards. Demonstrate leadership characteristic, such as: problem solving, keeping records and documenting tasks.
Teaching Schedule
Week Number | Topic Delivered | Assessment Task |
1 | Introduction to the competency of EEET6783C Mathematical linear measurement in engineering: • Precision and error in mathematical computations and • Displaying mathematical outcomes in the correct format using the appropriate significant figures and in scientific notation • Perimeters of plane figures, polygons and the perimeter of shapes involving arcs • Pythagoras’ theorem to engineering situations | |
2 | Mathematical spatial measurement in engineering: • Areas of combined shapes • Volume and surface areas of solids Trigonometry: • Right triangle trigonometry in engineering problems | |
3 | Trigonometry (cont): • Trigonometrical concepts in problems involving inclined planes, vectors and force sand electrical sinusoidal waveforms • Sine and cosine rules in practical applications • Mathematical concepts for radial and triangulation surveys | |
4 | Basic Algebra in engineering calculations: • Basic operations involving substitutions, additions, removal of brackets, multiplication and divisions • Solving linear equations • Transportation in non-linear equations Linear graphical techniques in engineering problem solving: • Graphing linear functions • Deriving equations from graphs and tables • Solving simulations equations algebraically and graphically • The best line of fit graphically and determine equation | |
5 | Mathematical computations involving polynomials: • Adding, subtracting and multiplying polynomials • Factorising trinomials • Solving quadratic equation Mathematical computations involving quadratic graphs • Graphs of quadratic functions • Maxima and minima • Graphical solutions of quadratic equations | Assignment handed out (worth 20% of total mark) due date end of week 16. |
6 | • Properties of a parabola • Applications of parabolas in engineering applications Trigonometry and graphical techniques in engineering problems: • Graphs of trigonometric functions e.g.: V=Vmsinθ,I=Imcosθ • Properties of a parabola • Applications of parabolas in engineering applications Trigonometry and graphical techniques in engineering problems: • Graphs of trigonometric functions e.g.: V=Vmsinθ,I=Imcosθ | |
7 | • Addition of equations such as: vsinθ + usin(θ + φ) graphically • Simpson’s Rule to determine the average and root mean square values of a sinusoidal waveform | |
8 | Practice test and revision | Practice test and revision |
9 | Test | Test (worth 30% of total mark) |
10 | Differential Calculus Basic concepts • Definition of the derivative of a function as the slope of a tangent line (the gradient of a curve); • limits; basic examples from 1st principles; • Notation and Results of derivative of k.f(ax + b) where f(x)=x to the power of n, sin x, cos x, tan x, • e to the power of x, ln x. Rules of Differentiation: • Examples are derivative of sum and difference; product rule; quotient rule; chain rule (function of a function), limited to two rules for any given function. • The 2nd derivative • Applications (Equations of tangents and normals; stationary points; turning points; and curve sketching; rates of change; rectilinear motion) • Verbally formulated problems involving related rates and maxima: minima | |
11 | Integral Calculus • The definition of Antiderivatives • Integration as the inverse operation to differentiation (Examples are results of the integral of k.f(ax + b) where f(x) = x to the power of n, sin x, cos x, sec squared x, e to the power of x) | |
12 | Methods of Integration. • The method of substitution • The method of integration by parts | |
13 | Differential Equations: • Introduction and definition • First order separable and linear equations • Applications of first order differential equations | |
14 | Statistical data presentation: • Appropriate presentation of frequency tables, histograms, polygons, stem and leaf plots • Advantages of different visual presentations Appropriate sampling techniques for gathering data encompassing: • Design of surveys and census • Sample data using correct technique Use of the measures of central tendency encompassing: • Estimation of percentiles and deciles from cumulative frequency polygons (ogives) • Interpreting data from tables and graphs including interpolation and extrapolation • Analysing misleading graphs | |
15 | Measures of dispersion in statistical presentations encompassing: • Box-and-whisker graphs • Measures of dispersion using variance and standard deviation • Standardised scores including Z-scores Correlation and regression techniques encompassing: • Interpreting scatter plots • Correlation coefficients • Calculate the regression equation and use for prediction purposes | |
16 | Elementary probability theory encompassing: • Probabilities in everyday situations • Counting techniques: factorials; permutations; combinations Paschal’s Triangle and the Normal Curve encompassing: • Paschal’s triangle • Characteristics of the normal curve • Standard Deviation and applications to everyday occurrences • Probabilities using the normal curve | |
17 | Revision. Practice Exam | Practice Exam |
18 | Final Exam | Final Exam (worth 50% of total mark) |
Learning Resources
Prescribed Texts
Glyn James, Modern Engineering Mathematics, fourth edition, Pearson Education Australia |
References
• Croft A, Davidson R, Mathematics for Engineers, third edition, Pearson Education Australia |
Other Resources
Overview of Assessment
Progressive assessments will include written and oral demonstration, assignments, tests, projects and computer assisted learning.
Assessment Tasks
Assessment task 1 (assignment ): 20%
Written and computer application assignment to demonstrate an understanding with applications of mathematical linear and spatial measurement in engineering, trigonometry and basic algebra, linear and quadratic functions involving engineering problems, applications of differential calculus, integral calculus and problems with engineering applications, statistical data and probability. This assessment allows students to work as a group which will help to revise and prepare for the next assessments (Tes and Final Exam) .
Assessment task 2 (test 1): 30%
This assessment demonstrates an understanding with applications of mathematical linear and spatial measurement in engineering, trigonometry and basic algebra, linear and quadratic functions involving engineering problems which are covered from week 1 to week 8. The time allowed for this test is no more that 2.5 hours.
Assessment task 4 (Final Exam): 50%
This assessment demonstrates an understanding with applications of differential calculus, integral calculus and problems with engineering applications, statistical data and probability which is covered from week 10 to week 17. The time allowed for this exam is 2 hours.
This course is graded using the following course grades-
CHD- Competent with High Distinction
CDI- Competent with Distinction
CC- Competent with Credit
CAG- Competency Achieved - Graded
NYC- Not Yet Competent
DNS- Did Not Submit for Assessment
Make sure you understand the special consideration policy available at -
http://www.rmit.edu.au/browse;ID=qkssnx1c5r0y
Assessment Matrix
Competency National Code | Competency Title | Cluster Title | Assessment Types |
UEENEEE050B | Electro Computation | Engineering Maths A | Test 1 Assignment Exam |
Other Information
- Minimum student directed hours are 24 in addition to 96 scheduled teaching hours.
- Student directed hours involve completing activities such as reading online resourses, assignements, notes and other learning material, preparation for test and exam and individual student - teacher course related consultation.
Course Overview: Access Course Overview