Course Title: Use mathematics for higher level engineering
Part B: Course Detail
Teaching Period: Term1 2015
Course Code: CIVE5699
Course Title: Use mathematics for higher level engineering
School: 130T Vocational Engineering
Campus: City Campus
Program: C6093 - Advanced Diploma of Engineering Design
Course Contact: Program Manager
Course Contact Phone: +61 3 9925 4468
Course Contact Email: engineering-tafe@rmit.edu.au
Name and Contact Details of All Other Relevant Staff
Program Manager
Mr. Ahmet Ertuncay
Tel. +61 3 9925 8375
Email: ahmet.ertuncay@rmit.edu.au
Ms. Annabelle Lopez
Tel. +61 3 9925 4823
Email: annabelle.lopez@rmit.edu.au
Nominal Hours: 60
Regardless of the mode of delivery, represent a guide to the relative teaching time and student effort required to successfully achieve a particular competency/module. This may include not only scheduled classes or workplace visits but also the amount of effort required to undertake, evaluate and complete all assessment requirements, including any non-classroom activities.
Pre-requisites and Co-requisites
EDX130B Use technical mathematics (basic)
EDX140B Use technical mathematics (advanced)
EAX110B Use calculus
Course Description
This unit covers the competency to differentiate and integrate nth degree polynomials, exponential and logarithmic functions, trigonometric and inverse trigonometric functions and hyperbolic and inverse hyperbolic functions.
This unit also covers the skills and knowledge required in solving engineering mathematics problems by using differentiation, integration and systems of linear equations in conjunction with the deployment of a suitable software application package. This unit also covers the competencies achieved in first semester Engineering athematics at university.
National Codes, Titles, Elements and Performance Criteria
National Element Code & Title: |
EAX095B Use mathematics for higher level engineering |
Element: |
01. Graph simple functions |
Performance Criteria: |
01.1 Numbers are identified as ∈R |
Element: |
02. Use systems of linear equations to solve Engineering mathematics problems. |
Performance Criteria: |
02.1 Linear equations are represented as a matrix. |
Element: |
03. Define and evaluate rate of change. |
Performance Criteria: |
03.1 Functions are examined for various limits. |
Element: |
04. Use the derivative of a function to calculate rates of change. |
Performance Criteria: |
04.1 Units are substituted into functions to calculate the rate of change. |
Element: |
05. Examine the derivatives of the six trigonometric functions. |
Performance Criteria: |
05.1 Sinusoidal functions are graphed and interpreted. |
Element: |
06. Graph functions using the first and second derivative. |
Performance Criteria: |
06.1 Critical values are used to define stationary and inflection points. |
Element: |
07. Determine the maximum or minimum of functions in engineering situations. |
Performance Criteria: |
07.1 Relationships between functions are examined through related rates of change. |
Element: |
08. Relate density, mass and moment using antiderivatives or indefinite integrals. |
Performance Criteria: |
08.1 The mass of a beam is determined using integration. |
Element: |
09. Integrate functions using the properties of The Fundamental Theorem of Calculus. |
Performance Criteria: |
09.1 Definite integrals are derived and calculated. |
Element: |
10. Apply the definite integral to engineering calculations. |
Performance Criteria: |
10.1 The area between two curves is calculated. |
Element: |
11. Integrate exponential and Logarithmic functions. |
Performance Criteria: |
11.1 An inverse function is defined. |
Element: |
12. Integrate inverse Trigonometric Functions. |
Performance Criteria: |
12.1 Inverse trigonometric functions are defined. |
Element: |
13. Differentiate and integrate Hyperbolic and Inverse Hyperbolic Functions. |
Performance Criteria: |
13.1 Coshx, sinhx, tanhx are defined. |
Learning Outcomes
. Refer to elements
Details of Learning Activities
You will involve in the following learning activities to meet requirements for this course
Teaching Schedule
Week | Topic Delivered | Elements / Performance Criteria |
1 | Download/Explain course including assessments and policies/Revision of Pre Requisite course Real Numbers are defined and identified Basic concepts The Absolute value Assignment (part A) handed out (worth 5% of total mark) due date end of week 4. | 1.1,1.2 |
2 | Domain and range of functions are determined. Graphs of absolute value, quadratic and composite functions are drawn | 1.3, 1.4 |
3 | Linear Algebra: Linear equations are represented as a matrix. Matrix Algebra Definition and Matrix Algebra Elementary row operations | 2.1,2.2,2.3 |
4 | Matrix Algebra The Transpose, the Inverse of a matrix | 2.4,2.5,2.6 |
5 | Matrix Algebra The Inverse of a matrix Assignment handed out (worth 15% of total marks, due date end of week 16). | 2.5, 2.6,2.7 |
6 | Determinants of a matrix Application of matrix algebra to solving linear systems. |
2.1,2.2,2.3,2.4,2.5 |
7 | Solutions of linear equations Application of matrix algebra to real life problems. Engineering Applications |
2.3,2.4,2.5,2.6,2.7 |
8 | Practice Test and revision |
1.1,1.2,1.3,1.4 |
9 | Closed book Test (worth 30% of total mark) |
1.1,1.2,1.3,1.4 |
10 | Functions of multiple Variables Graphs, level curves and surfaces | 3.1,3.2,3.3,3.4 4.1,4.2,4.3,4.4 |
11 | Partial derivatives, product rule, Quotient rule | 5.1,5.2,5.3,5.4,5.5 |
12 | Partial derivatives, chain rule; directional derivative Maxima and minima | 6.1,6.2,6.3 7.1,7.2,7.3 |
13 | Application of partial derivatives Define and evaluate rate of change | 8.1,8.2,8.3 9.1,9.2,9.3,9.4 |
14 | The Exponential and Logarithmic functions Differentiation and integration of Exponential and Logarithmic functions Hyperbolic Functions Inverse Hyperbolic Functions |
10.1,10.2,10.3,10.4,10.5,10.6,10.7 11.1,11.2,11.3,11.4,11.5,11.6 |
15 | Applications of Exponential, Logarithmic, Hyperbolic and Invers Hyperbolic functions into engineering problems Revision | 12.1,12.2,12.3,12.4 13.1,13.2,13.3,13.4 |
16 | Practice Exam and revision |
3.1,3.2,3.3,3.4 |
17 - 18 | Closed book Exam (worth 50% of total mark) | 3.1,3.2,3.3,3.4 4.1,4.2,4.3,4.4 5.1,5.2,5.3,5.4,5.5 6.1,6.2,6.3 7.1,7.2,7.3 8.1,8.2,8.3 9.1,9.2,9.3,9.4 10.1,10.2,10.3,10.4,10.5,10.6,10.7 11.1,11.2,11.3,11.4,11.5,11.6 12.1,12.2,12.3,12.4 13.1,13.2,13.3,13.4 |
Learning Resources
Prescribed Texts
Fitzgerald G. F, Peckham I.A, Mathematical Methods for Engineers and Scientists, fourth edition, 2005, Pearson Education Australia |
1-74009-733-5 |
References
Other Resources
Overview of Assessment
Assessment are conducted in both theoretical and practical aspects of the course according to the performance criteria set out in the National Training Package. Students are required to undertake summative assessments that bring together knowledge and skills.
To successfully complete this course you will be required to demonstrate competency in each assessment tasks detailed under the Assessment Task Section.
Your assessment for this course will be marked using the following table
NYC (<50%)
Not Yet Competent
CAG (50-59%)
Competent - Pass
CC (60-69%)
Competent - Credit
CDI (70-79%)
Competent - Distinction
CHD (80-100%)
Competent - High Distinction
Assessment Tasks
• Assignments, 20%
• Test, 30%
• Exam , 50%
Assessment Matrix
EAX095B Elements & Performance Criteria | |||||||||||
Assessments | 1.1 | 1.2 | 1.3 | 1.4 | 2.1 | 2.2 | 2.3 | 2.4 | 2.5 | 2.6 | 2.7 |
Assignment | x | x | x | x | x | x | x | x | x | x | x |
Test | x | x | x | x | x | x | x | x | x | x | x |
Exam |
EAX095B Elements & Performance Criteria | ||||||||||||||||
Assessments | 3.1 | 3.2 | 3.3 | 4.1 | 4.2 | 5.1 | 5.2 | 5.3 | 5.4 | 5.5 | 6.1 | 6.2 | 6.3 | 7.1 | 7.2 | 7.3 |
Assignment | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x |
Test | ||||||||||||||||
Exam | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x |
EAX095B Elements & Performance Criteria | ||||||||||||||||||
Assessments | 8.1 | 8.2 | 8.3 | 9.1 | 9.2 | 9.3 | 9.4 | 10.1 | 10.2 | 10.3 | 10.4 | 10.5 | 10.6 | 10.7 | 11.1 | 11.2 | 11.3 | 11.4 |
Assignment | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x |
Test | ||||||||||||||||||
Exam | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x |
EAX095B Elements & Performance Criteria | ||||||||||
Assessments | 11.5 | 11.6 | 12.1 | 12.2 | 12.3 | 12.4 | 13.1 | 13.2 | 13.3 | 13.4 |
Assignment | x | x | x | x | x | x | x | x | x | x |
Test | ||||||||||
Exam | x | x | x | x | x | x | x | x | x | x |
Other Information
• Student directed hours involve completing activities such as reading online resources, assignment, individual student-teacher course-related consultation. Students are required to self-study the learning materials and complete the assigned out of class activities for the scheduled non-teaching hours. The estimated time is 12 hours outside the class time.
Credit Transfer and/or Recognition of Prior Learning (RPL):
You may be eligible for credit towards courses in your program if you have already met the learning/competency outcomes through previous learning and/or industry experience. To be eligible for credit towards a course, you must demonstrate that you have already completed learning and/or gained industry experience that is:
• Relevant
• Current
• Satisfies the learning/competency outcomes of the course
Please refer to http://www.rmit.edu.au/students/enrolment/credit to find more information about credit transfer and RPL.
Study and Learning Support:
Study and Learning Centre (SLC) provides free learning and academic development advice to you. Services offered by SLC to support your numeracy and literacy skills are:
• Assignment writing, thesis writing and study skills advice
• Maths and science developmental support and advice
• English language development
Please refer to http://www.rmit.edu.au/studyandlearningcentre to find more information about Study and Learning Support.
Disability Liaison Unit:
If you are suffering from long-term medical condition or disability, you should contact Disability Liaison Unit to seek advice and support to complete your studies.
Please refer to http://www.rmit.edu.au/disability to find more information about services offered by Disability Liaison Unit.
Late Submission:
If you require an Extension of Submittable Work (assignments, reports or project work etc.) for seven calendar days or less (from the original due date) and have valid reasons, you must complete an Application for Extension of Submittable Work (7 Calendar Days or less) form and lodge it with the Senior Educator/ Program Manager.
The application must be lodged no later than one working day before the official due date. You will be notified within no more than two working days of the date of lodgement as to whether the extension has been granted.
If you seek an Extension of Submittable Work for more than seven calendar days (from the original due date), you must lodge an Application for Special Consideration form under the provisions of the Special Consideration Policy, preferably prior to, but no later than two working days after the official due date.
Submittable Work (assignments, reports or project work etc.) submitted late without approval of an extension will not be accepted or marked.
Special Consideration:
Please refer to http://www.rmit.edu.au/students/specialconsideration to find more information about special consideration.
Plagiarism:
Plagiarism is a form of cheating and it is very serious academic offence that may lead to expulsion from the university.
Please refer to http://www.rmit.edu.au/academicintegrity to find more information about plagiarism.
Email Communication:
All email communications will be sent to your RMIT email address and you must regularly check your RMIT emails.
Course Overview: Access Course Overview