Course Title: Mathematical Transforms

Part B: Course Detail

Teaching Period: Term2 2008

Course Code: BUSM6020L

Course Title: Mathematical Transforms

School: 155T Life & Physical Sciences

Campus: City Campus

Program: C6050 - Advanced Diploma of Electrical Engineering

Course Contact : Selva Venkatesan

Course Contact Phone: +61 3 9925 4964

Course Contact

Name and Contact Details of All Other Relevant Staff

Nominal Hours: 60

Regardless of the mode of delivery, represent a guide to the relative teaching time and student effort required to successfully achieve a particular competency/module. This may include not only scheduled classes or workplace visits but also the amount of effort required to undertake, evaluate and complete all assessment requirements, including any non-classroom activities.

Pre-requisites and Co-requisites

Satisfactory completion of Calculus & Vectors and Differential Equations

Course Description

Students will develop fundamental mathematical skills necessary to support articulation into tertiary studies in engineering. It provides students with basic techniques for differential equations which occur in engineering environment and the application of Fourier series and Laplace Transformations properties.

National Codes, Titles, Elements and Performance Criteria

National Element Code & Title:

UTENES008A Provide technical leadership in the workplace



Performance Criteria:


Learning Outcomes

1. Determine Laplace Transformations with the aid of tables.

2. Apply the method of Laplace transformations to find solutions of initial value problems.

3. Determine the Fourier Series of periodic functions.

4 Determine half range Fourier sine and cosine series

5. Apply the method of separation of variables to solve the heat equation with prescribed boundary conditions and initial conditions

6. Apply the method of separation of variables to solve the wave equation with prescribed boundary conditions and initial conditions

Details of Learning Activities

Students will be provided with classroom tutorial instruction in each of the units in order to complete the learning outcomes, tasks and assessment outcomes using the provided and recommended materials, references and the textbook.

Teaching Schedule

Note: Dates and activities may alter. Students will be advised in advance.

Week Starting

Week NumberContent
 7 Jul1Basic results of Laplace Transforms
 14 Jul2Theorems of Laplace Transforms
 21 Jul3Inverse Laplace Transforms
 28 Jul4Solving Linear Differential Equations using Laplace
 4 Aug5Solving Second order Differential Equations using Laplace
 11 Aug6Revision
 18 Aug7Test 1 worth 50%
 25 Aug8Periodic functions
 1 Sep9Even & odd functions
 8 Sep10Fourier coefficients
 15 Sep11Fourier series of periodic functions
 22 Sep Student Vacation
 29 Sep12Half range Fourier sine and cosine series
 6 Oct13Partial Differential Equations
 13 Oct14Boundary Value Problems – Heat equation
 20 Oct15Boundary Value Problems – Wave equation
 27 Oct16Revision
 3 Nov17Test 2 worth 50%

Learning Resources

Prescribed Texts

RMIT Lecture Notes


Advanced Engineering Mathematics, Fourth Edition, K.A. Stroud

Other Resources

Overview of Assessment

Test 1 worth 50%
Test 2 worth 50%

Assessment Tasks

Mid Semester Test

Topics: Laplace Transforms – Theorems on Laplace Transforms, Inverse Laplace Transforms, and Solving First order & Second order Differential Equations using Laplace.

Duration: 2 hours

Date: The week beginning 18th August

Worth: 50% of overall score

Final Semester Examination

Topics: Fourier Series - Periodic functions, Even and odd functions, Half range Fourier Series, Partial Differential Equations and Boundary Value Problems

Duration: 2 hours

Date: The week beginning 3rd Nov

Worth: 50% of overall score

Note: This course outline is subject to change. Students should check with their lecturer

Assessment Matrix

Course Overview: Access Course Overview