Course Title: Thermodynamics 3

Part A: Course Overview

Program: C6016 Advanced Diploma of Engineering Technology (Principal Technical Officer)

Course Title: Thermodynamics 3

Portfolio: SEH Portfolio Office

Nominal Hours: 60

Regardless of the mode of delivery, represent a guide to the relative teaching time and student effort required to successfully achieve a particular competency/module. This may include not only scheduled classes or workplace visits but also the amount of effort required to undertake, evaluate and complete all assessment requirements, including any non-classroom activities.

Course Code

Campus

Career

School

Learning Mode

Teaching Period(s)

OENG5198

City Campus

TAFE

130T Vocational Engineering

Distance / Correspondence or Face-to-Face

Term2 2010,
Term2 2012,
Term2 2013,
Term1 2014

Course Contact: Program Manager

Course Contact Phone: +61 3 9925 4468

Course Contact Email: engineering-tafe@rmit.edu.au



Course Description

The purpose of this module is to provide participants with the skills, knowledge and attitudes required to effectively carry out the engineering calculations needed for the selection and performance appraisal of the equipment associated with internal combustion engines, steam power stations, gas turbines and air conditioning plant. The module builds on to concepts learnt in Thermodynamics 1 & 2 and also facilitates articulation to Degree courses in Engineering (Mechanical & Manufacturing).

Pre-requisite Courses and Assumed Knowledge and Capabilities

The following modules (or equivalents) should be preferably completed prior to, or in conjunction with, this module:
 EA 001 Calculus
 EA 714 Thermodynamics 1
 EB 711 Thermodynamics 2



National Competency Codes and Titles

National Element Code & Title:

VBG877 Thermodynamics 3


Learning Outcomes

On completion of this module the learner should be able to:
1. Apply the First Law of Thermodynamics to simple non-flow and steady flow engineering applications (Review of basic concepts).
2. Apply the First Law of Thermodynamics to solve engineering problems relating to reversible and irreversible processes for perfect gases and vapours (Review of basic concepts).
3. Perform the necessary engineering computations required to evaluate the performance and efficiency of practical Reciprocating Air-Compressors.
4. Apply the Second law of Thermodynamics to simple non-flow and steady flow engineering applications.
5. Perform the necessary engineering computations required to evaluate the performance and efficiency of practical Reciprocating Internal Combustion Engines and hence select suitable equipment.
6. Perform the necessary engineering computations required to evaluate the performance and efficiency of practical Steam Plants and hence select suitable equipment.
7. Perform the necessary engineering computations required to evaluate the performance and efficiency of practical Gas Turbine Plants and hence select suitable equipment.
8. Perform the necessary engineering computations required to evaluate the performance and efficiency of practical Air-Conditioning Plants and hence select suitable equipment.


Overview of Assessment

Assessment for this module will consist of the following:
Practical Laboratories 
Progressive written tests/assignments  
End of module written exam