Course Title: Prepare financial forecasts and projections

Part B: Course Detail

Teaching Period: Term1 2008

Course Code: BAFI5122C

Course Title: Prepare financial forecasts and projections

School: 650T TAFE Business

Campus: City Campus

Program: C6072 - Advanced Diploma of Accounting

Course Contact : Gowri Raviganesh

Course Contact Phone: +61 3 9925 1337

Course Contact

Name and Contact Details of All Other Relevant Staff

Mohan Sundararaman

Nominal Hours: 70

Regardless of the mode of delivery, represent a guide to the relative teaching time and student effort required to successfully achieve a particular competency/module. This may include not only scheduled classes or workplace visits but also the amount of effort required to undertake, evaluate and complete all assessment requirements, including any non-classroom activities.

Pre-requisites and Co-requisites


Course Description

This unit describes the functions involved in preparing financial forecasts and projections. It will also provide students with the skills and knowledge in the application of statistical analyses and processing of business data.

National Codes, Titles, Elements and Performance Criteria

National Element Code & Title:

FNSICORG517A Prepare financial forecasts and projections


Collect, consolidate, analyse and model data

Performance Criteria:

<!--[if !supportLists]-->&middot;      <!--[endif]-->Data is reviewed to ensure consistency with actual results and mode l used.<o:p></o:p>

<!--[if !supportLists]-->&middot;      <!--[endif]-->Analysis results are documented in a clear and unambiguous way.<o:p></o:p>

<!--[if !supportLists]-->&middot;      <!--[endif]-->Data collected are reliable, valid, complete and comprehensive.<o:p></o:p>

<!--[if !supportLists]-->&middot;      <!--[endif]-->Processing is completed in accordance with established timetable.<o:p></o:p>

<!--[if !supportLists]-->&middot;      <!--[endif]-->Data are consolidated in a logical structured format that enables ready analysis.<o:p></o:p>


Document results and obtain approval

Performance Criteria:

<!--[if !supportLists]-->&middot;     <!--[endif]-->Results are documented in a clear and understandable manner.<o:p></o:p>

<!--[if !supportLists]-->&middot;      <!--[endif]-->Documented results are in a format suit t meet needs of target users.<o:p></o:p>

<!--[if !supportLists]-->&middot;      <!--[endif]-->All approvals are obtained in accordance with management objectives, financial and company policies.<o:p></o:p>

<!--[if !supportLists]-->&middot;      <!--[endif]-->Results are distributed within timetable and according to company policy.<o:p></o:p>


Identify assumptions and parameters

Performance Criteria:

<!--[if !supportLists]-->&middot;      <!--[endif]-->Business plans and exception reports are reviewed to identify and resolve conflicts in assumptions. <o:p></o:p>

<!--[if !supportLists]-->&middot;      <!--[endif]-->Assumptions and parameters are reviewed to ensure compliance with company policy and procedures<o:p></o:p>

<!--[if !supportLists]-->&middot;      <!--[endif]-->Current and historical financial reports are examined to establish trends.<o:p></o:p>

<!--[if !supportLists]-->&middot;      <!--[endif]-->                         External environment is examined to gain objective overview.<o:p></o:p><o:p></o:p>


Issue instructions and relevant aids for preparations of forecasts and projections

Performance Criteria:

<!--[if !supportLists]-->&middot;      <!--[endif]-->Instructions issued are clear and unambiguous and comply with company format at to ensure ease of use and consistency of interpretation.  <o:p></o:p>

<!--[if !supportLists]-->&middot;      <!--[endif]-->Types of business are identified to enable effective models to be selected.<o:p></o:p>

<!--[if !supportLists]-->&middot;      <!--[endif]-->Training is provided to ensure comprehensive understanding and effective use of financial models by users.<o:p></o:p>


Plan preparation timetable

Performance Criteria:

<!--[if !supportLists]-->&middot;      <!--[endif]-->All critical milestones are identified to ensure financial forecasts and <o:p></o:p>

    projections can be prepared within timeframes. <o:p></o:p>

<!--[if !supportLists]-->&middot;      <!--[endif]-->Business plans are reviewed to identified timeframe parameters used.<o:p></o:p>

<!--[if !supportLists]-->&middot;     <!--[endif]-->Business plans; financial forecasting and processing systems are reviewed to identify all potential conflicts.<o:p></o:p>

Learning Outcomes

Please refer to Elements of Competency.

Details of Learning Activities

  • An initial introduction to topics and techniques via a lecture will include the fundamentals and methods of business statistics.
  • Students will participate in tutorial-based discussion groups that will enable them to relate topics to the environment, in which they live and work. They will be required to present their own thoughts, opinions and ideas. A range of learning team activities will assist them to develop and apply their knowledge in different situations that reflect tasks, which they might encounter in a business environment.
  • A range of self directed learning activities would be provided for students to practice, reinforce and summarise the key learning.
  • Students will be responsible for managing the progress of their self-directed learning. Students will work on self-directed learning activities (multiple choice & Internet based case study) independently of the lecturer.

Teaching Schedule

Week beginningTopics /AssessmentTextbook References
Week 1 Feb 11Introduction to Statistics, sampling and data collectionChapter 7 & 8
Week 2 Feb 18Organisation and Visual representation of data Chapter 7 & 9
Week 3 Feb 25Measures of Central tendencies Chapter 10
Week 4 Mar 3Measures of Dispersion Chapter 11
Week 5 Mar 10Probability and Normal Distribution Chapter 12
Week 6 Mar 17Estimation & Revision  
                                            Easter Break (Mar 20th to 26th)
Weel 7 Mar 31Class Test (20%)  
Week 8 Apr 7Excel in lab  
Week 9 Apr 14Hypothesis Testing Chapter 14
Week 10 Apr 21Correlation and Regression Chapter 16
Week 11 Apr 28Correlation and Regression Excel in lab Chapter 16
Week 12 Mar 5Time series Chapter 18
Week 13 May 12Time Series, Excel in lab Chapter 18
Week 14 May 19Index numbersChapter 17
Week 15 May 26

Revision, (Due date for Assignment 20%)

Week 16 Jun 2Revision 
Week 17 Jun 9Examination (60%) 
Week 18 Jun 16Course review and assessment feedback  


Learning Resources

Prescribed Texts

Greg Dickman, Financial Forecasting And Data Analysis. Thomson.



Other Resources

Online Resources

Reference text
Levine etal, Statistics for Managers, 4th Edition.

Overview of Assessment

Assessment will incorporate a variety of methods including tests, assignments and an examination. Tests will be closed book consisting of multiple choice questions, problem solving exercises and applied exercises. The assignment will require students to undertake basic research on a business theme. Students working in groups will be required to analyse data using MS Excel 2003 and write reports as directed.

Students will receive ongoing feedback on their progress in the course. Feedback on assessments will be given in a timely manner. Students will be informed about how to improve their performance in the competency / course and what they will need to to to be deemed competent or to gain a pass in the assessment.

Assessment Tasks

Assessment in this course will consist of 3 tasks:

  • 1 Test (held in week 8)
    In-class test worth 20 % will be held in week 8. Test will be closed book and one & &frac12; hour in duration. Formula sheet will be provided and only non-programmable calculators are allowed.
  • 2 Group Assignment (due week 15)
    Students need to source information from specified web sites. Analyse data using EXCEL “Data Analysis” tool pack and write reports. This is worth 20% and due in week 15.
  • 3 Exam (During Exam period)
    A closed book exam worth 60% covering all topics will be held during exam period.

Assessment Methods
Assessment will incorporate a variety of methods including written test, assignment and exam.

Students are assessed against all the performance elements of the course and must demonstrate an understanding of all elements to be deemed competent.  To receive a pass for this course student must also pass the final exam and achieve at least 50% overall.

Assessment Matrix


ElementClass testAssignmentExamination
FNSICORG517A/01 Plan Preparation Table YYY
FNSICORG517A/02 Identify assumption and Parameters  YYY
FNSICORG517A/03 Issue Instructions and relevant aids for preparation of forecast and projection  YY
FNSICORG517A/04 Collect, consolidate, model and analyse data  YY
FNSICORG517A/05 Document Result and obtain approval YYY

Other Information

  • Assessment criteria.
    This course will enable students to achieve the following learning outcomes: 

1. Organising, summarising and presenting business data using statistical tools.

  • 1.1 Identify types of statistics that are common to business
  • 1.2 Differences between Sample and Population
  • 1.3 Introduction to sampling
  • 1.4 Distinguish primary and secondary data
  • 1.5 Explain why data is presented visually
  • 1.6 Organising raw data into Frequency and grouped frequency distribution
  • 1.7 Represent data tables graphically * Histograms * Polygons * Ogives * Bar chart * Pie chart
  • 1.8 Calculate the measure of central tendencies (only for raw data) * Mean * Mode * Media
  • 1.9 Identify the appropriate measure for a given situation
  • 1.10 Discuss the significance of skewness of a dataCalculate the measure of dispersion (only for raw data) * Range * Inter-Quartile range * Standard deviation
  • 1.11 Writing a brief Business report
  • 1.12 Use of software (excel) for analysing data

2. Drawing inferences about population from sample statistics

  • 2.1 Distinguish between a population and a sample
  • 2.2 Describe the special features of a normal distribution
  • 2.3 Understand and apply central limit theorem
  • 2.4 Calculate point estimates and confidence interval for the population mean
  • 2.5 Solve business problems that can be represented by a normal distribution
  • 2.6 Understand the principles of statistical inference
  • 2.7 Identifying research questions and Formulate hypothesis
  • 2.8 Decision-making based on test statisticsUse of EXCEL

3.Measure the nature and degree of relationship between two variables and represent this relationship by a linear equation

  • 3.1 Discussing examples where there is association between two variables
  • 3.2 Understand dependent and independent variable
  • 3.3 Draw and interpret a scatter diagram
  • 3.4 Assess relationship with the help of correlation coefficient
  • 3.5 Interpret of correlation coefficient
  • 3.6 Understand linear regression
  • 3.7 Establish linear relation between two variables using the method of Least squares Regression
  • 3.8 Prediction based on linear regression equation
  • 3.9Check the goodness of fit using coefficient of determinationUse of EXCEL

4.Observing data at specified time intervals and use it for forecasts.

  • 4.1 Identify and interpret the four basic measures of variation in a time series analysis
  • 4.2 Describe a time series and explain its use by giving example
  • 4.3 Use common methods of fitting secular trend lines to time series (including semi averages, moving averages and least-squares)
  • 4.4 Forecast using trendUse of EXCEL

5.Observing Prices of different items at specified time intervals and use it to measure the changes in retail price:

  • 5.1 Use of simple, composite & weighted Price indices to measure the change in retail prices.
  • 5.2 Special applications of the CPI

Course Overview: Access Course Overview