Course Title: Multivariate Analysis Techniques
Part A: Course Overview
Course Title: Multivariate Analysis Techniques
Credit Points: 12.00
Terms
Course Code |
Campus |
Career |
School |
Learning Mode |
Teaching Period(s) |
MATH1309 |
City Campus |
Postgraduate |
145H Mathematical & Geospatial Sciences |
Face-to-Face |
Sem 2 2008, Sem 2 2009, Sem 2 2010, Sem 2 2011, Sem 2 2012, Sem 1 2014, Sem 1 2016 |
MATH1309 |
City Campus |
Postgraduate |
171H School of Science |
Face-to-Face |
Sem 2 2018, Sem 2 2019, Sem 1 2020, Sem 2 2020, Sem 2 2021, Sem 2 2022, Sem 2 2023, Sem 1 2024 |
Course Coordinator: Professor Irene Hudson
Course Coordinator Phone: +61 3 9925 3224
Course Coordinator Email: irene.hudson@rmit.edu.au
Course Coordinator Location: 015.03.019
Course Coordinator Availability: by appointment, by email
Pre-requisite Courses and Assumed Knowledge and Capabilities
Assumed Knowledge
This course builds on a knowledge of matrix algebra and univariate statistical inference (probability distribution, estimation procedures and statistical hypotheses testing).
Course Description
Multivariate analysis skills have been commonly recognised as part of the key requisites for analytics analysts. The complexity of most phenomena in the real world requires an investigator to collect and analyse observations on many different variables instead of a single variable. The desire for statistical techniques to elicit information from multivariate dimensional data thus becomes essential and crucial for data analysts.
The objective of the course is to introduce several useful multivariate techniques, making strong use of illustrative examples and matrix mathematics. The course will start with the extensions of univariate techniques to multivariate frameworks, such as the multivariate normal distribution, confidence ellipse estimation, hypothesis testing, simultaneous confidence intervals and Bonferroni confidence intervals. The course will also cover the techniques unique to the multivariate setting such as principal component analysis, factor analysis, discrimination, classification and clustering analysis.
Skills will be developed with SAS, a leading statistical analysis software package used in industry.
Objectives/Learning Outcomes/Capability Development
This course contributes to the following Program Learning Outcomes for MC004 Master of Statistics and Operations Research and MC242 Master of Analytics:
Personal and professional awareness
- the ability to contextualise outputs where data are drawn from diverse and evolving social, political and cultural dimensions
- the ability to reflect on experience and improve your own future practice
- the ability to apply the principles of lifelong learning to any new challenge.
Knowledge and technical competence
- an understanding of appropriate and relevant, fundamental and applied mathematical knowledge, methodologies and modern computational tools.
Problem-solving
- the ability to bring together and flexibly apply knowledge to characterise, analyse and solve a wide range of problems
- an understanding of the relationship between the purpose of a model and the appropriate level of complexity and accuracy.
Communication
- the ability to effectively communicate both technical and non-technical material in a range of forms (written, electronic, graphic, oral), and to tailor the style and means of communication to different audiences. Of particular interest is the ability to explain technical material, without unnecessary jargon, to lay persons such as the general public or line managers.
On completion of this course you should be able to:
- Perform exploratory analysis of multivariate data, such as plot multivariate data, calculating descriptive statistics, testing for multivariate normality;
- Conduct statistical inference about multivariate means including hypothesis testing, confidence ellipsoid calculation and different types of confidence intervals estimation;
- Undertake statistical analyses using appropriate multivariate techniques, which includes principal component, factor analysis, discriminant and clustering analysis;
- Analyse multivariate data using the SAS statistical software package.
Overview of Learning Activities
There will be a combination of lectorials to cover theoretical concepts and practical lab sessions to apply theory to practice and analytics using the SAS package.
The course will be delivered using lectorials including interactive problem sessions. Pre-recorded lectures will explain theories underlying multivariate techniques, with demonstrations using real applications from varied disciplines. The course material is designed to offer you a balance between theory and applied examples. In addition the problem sessions will provide students opportunities to learn programming for multivariate data analysis using the industry standard package SAS.
All course materials such as lecture notes, lab practice, exercises and assessment can be accessed from Canvas LMS.
Overview of Learning Resources
RMIT will provide you with resources and tools for learning in this course through myRMIT Studies Course.
There are services available to support your learning through the University Library. The Library provides guides on academic referencing and subject specialist help as well as a range of study support services. For further information, please visit the Library page on the RMIT University website and the myRMIT student portal.
Overview of Assessment
Assessment Tasks
Assessment Task 1: Problem Based Quiz
Weighting 30%
This assessment task supports CLOs 1 & 4
Assessment Task 2: Case Study
Weighting 30%
This assessment task supports CLOs 2, 3 & 4
Assessment Task 3: Project
Weighting 40%
This assessment supports CLOs 2 & 3
If you have a long-term medical condition and/or disability it may be possible to negotiate to vary aspects of the learning or assessment methods. You can contact the program coordinator or Equitable Learning Services if you would like to find out more.