Course Title: Radiation Physics & Laboratory

Part A: Course Overview

Course Title: Radiation Physics & Laboratory

Credit Points: 12.00

Terms

Course Code

Campus

Career

School

Learning Mode

Teaching Period(s)

PHYS2167

City Campus

Postgraduate

171H School of Science

Face-to-Face

Sem 1 2019

Course Coordinator: Prof. Rick Franich

Course Coordinator Phone: +61 3 9925 3390

Course Coordinator Email: rick.franich@rmit.edu.au

Course Coordinator Availability: By appointment


Pre-requisite Courses and Assumed Knowledge and Capabilities

It is assumed that you have a thorough grounding in the following areas of knowledge such as provided by the recommended course in each case (or equivalent):

  • Scientific mathematics, calculus, uncertainties (MATH1142 Calculus and Analysis 1 and MATH1144 Calculus and Analysis 2). It is assumed that you have completed courses in mathematics at the second year university level.
  • Kinematics, energy, momentum, forces (PHYS2122 Mechanics)
  • Basic quantum mechanics and relativity (PHYS2123 Modern Physics)
  • Electromagnetism (PHYS2127 Thermodynamics and Electromagnetism)
  • Scientific communication and presentation of data such as provided by a first year laboratory program and ONPS2334 Scientific Skills and Communication


Course Description

 

This course deals with the behaviour of electromagnetic radiation in the form of ionising radiation including; X-rays, Gamma Rays, Electrons, Alphas, and Neutrons. You will study the basic properties and phenomena of ionising radiation. You will be introduced to the fundamentals of radiation detection, and its practical applications in medicine, radiation protection, and to the study of the structure of matter. The course is augmented with practical laboratory sessions in radiation physics.

 

On completing this course you will be well prepared for advanced studies of theory and applications of, particularly courses in Nuclear Physics and Medical Physics. The course provides the necessary background for some advanced laboratory and final year project experiments. Importantly, the course gives you the opportunity to use high-quality equipment in the radiation laboratories within the School and teaches the principles of good laboratory practice in preparation for a more extended research project in a following semester.  


Objectives/Learning Outcomes/Capability Development

This course contributes to the following Program Learning Outcomes for MC215 Master of Medical Physics:   PLO-2 Advanced understanding of the origins of radiation and its interactions with matter pertaining to the production and use of ionising radiation, with particular regard to the protection of people and environments.   PLO-4 Skills to investigate, analyse and interrogate scientific data to ensure quality control of complex technological systems and to diagnose causes of discrepancies.   PLO-5 Skills to identify problems, generate novel solutions and evaluate their effectiveness.   PLO-6 Communication and research skills to interpret Medical Physics issues and justify decisions for specialist and non-specialist audiences.   PLO-9 Demonstrate the application of knowledge and skills with a high level of personal autonomy and accountability.


On completion of this course you should be able to:   1. Demonstrate an extended knowledge of concepts related to ionising radiation and its interactions with matter. 2. Solve conceptual and quantitative problems in Radiation Physics. 3. Employ relevant mathematical tools to process experimental data. 4. Communicate experimental findings and explain concepts to others – both to experts and non-specialists using several modes: written reports, posters and oral presentations. 5. Work in a group environment to solve extended physics problems and to conduct experiments; 6. Apply the theory you have learned to novel physical situations; Apply physics principles to interpret your experimental findings. 7. Undertake laboratory work and record your progress in a scientific, laboratory journal, and report on technical matters in a clear and concise manner;


Overview of Learning Activities

You will learn in this course by:

  • Attendance at lectures where material will be presented and explained, and the subject will be illustrated with demonstrations and examples;
  • Private study, working through the theory as presented in lectures, texts and notes, and gaining practice at solving conceptual and numerical problems;
  • Completing tutorial questions designed to give you further practice in application of theory, and to give feedback on your progress and understanding;
  • Completing written and online assignments consisting of numerical and other problems requiring an integrated understanding of the subject matter;
  • Undertaking a number of laboratory experiments related to the theory topics, keeping a laboratory journal and preparing reports on their outcomes.

Total study hours

48 teacher-guided hours (including 24 hours of Lab classes) and approximately 72 student-directed hours


Overview of Learning Resources

You will be able to access comprehensive course information, lecture notes, laboratory manuals, learning materials and other useful resources through the myRMIT website. You will also use laboratory equipment and computer-aided learning technologies within the School for project and assignment work. Lists of relevant reference texts, resources in the library and internet-based resources will be provided in the lecture notes and during the classes. Details of the recommended textbooks for this course are also provided in Part B of the course guide.   Experiment notes and supplementary materials will be made available as required. Some references relevant to the individual experiments may be suggested by the supervisors but you are also expected to seek out appropriate references yourself, from the Library or on-line. You will conduct experiments using equipment provided by the School, including computing facilities.    


Overview of Assessment

Assessment in this course is via a combination of tests, assignments, experimental reports (written and oral), experimental conduct in the laboratory, and formal examination.

 

There will be ongoing assessment during the semester to encourage you to engage with the material and to give feedback on your progress. This is done with in-class tests, online quizzes, and short assignments, including both conceptual and numerical problems. Written assignment submissions and reports will be required. All assessment tasks will be administered and submitted through the myRMIT online Learning Management System (Canvas).

 

Experimental work will be assessed by pre-Lab preparation tasks, in-class experimental conduct and journals, and via submission of laboratory reports. Mid-semester and final examinations will assess your overall achievement in the course.

 

Note that:

This course has no hurdle requirements.

 

Assessment Task 1:  Radiation Physics Assignments

Weighting 20%

This assessment task supports CLOs 1, 2, 3, & 5

 

Assessment Task 2: Laboratory Assessments

Weighting 50%

Lab journals: You will be required to keep and submit copies of lab journals for each experiment.  All lab journals will be graded. 

Formal Scientific Report: You will be required to submit aformal report on each of the experiments you perform during the Semester.

Scientific Poster: You will prepare a group scientific poster on a designated experiment.

Oral Presentation: You will participate in an individual/group oral presentation on an experiment you have done during the last rotation.

This assessment task supports CLO 3, 4, 5, 6 & 7

 

Assessment 3: Mid-semester and End-of-semester Exam

Weighting 30% 

This assessment supports CLO 1, 2, 3, & 4